
www.manaraa.com

AN AUTOMATED MULTI-AGENT FRAMEWORK FOR

TESTING DISTRIBUTED SYSTEM

by

Ehsanul Haque

B.S., American International University Bangladesh, 2007

M.S., Southern Illinois University Carbondale, 2013

A Thesis

Submitted in Partial Fulfillment of the Requirements for the

Masters of Science in Computer Science.

Department of Computer Science

in the Graduate School

Southern Illinois University Carbondale

May, 2013

www.manaraa.com

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 1541944

Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author.

UMI Number: 1541944

www.manaraa.com

THESIS APPROVAL

AN AUTOMATED MULTI-AGENT FRAMEWORK FOR

TESTING DISTRIBUTED SYSTEM

By

Ehsanul Haque

A Thesis Submitted in Partial

Fulfillment of the Requirements

for the Degree of

Masters of Science

in the field of Computer Science

Approved by:

Henry Hexmoor, PhD, Chair

Shahram Rahimi, PhD

Qiang Cheng, PhD

Graduate School

Southern Illinois University Carbondale

April 09, 2013

www.manaraa.com

i

AN ABSTRACT OF THE THESIS OF

EHSANUL HAQUE, for the MASTERS OF SCIENCE degree in COMPUTER SCIENCE,

presented on April 09, 2013, at Southern Illinois University Carbondale.

TITLE: AN AUTOMATED MULTI-AGENT FRAMEWORK FOR TESTING

DISTRIBUTED SYSTEM

MAJOR PROFESSOR: Dr. Henry Hexmoor

 Testing is a part of the software development life cycle (SDLC) which ensures

the quality and efficiency of the software. It gives confident to the developers about the

system by early detecting faults of the system. Therefore, it is considered as one of the

most important part of the SDLC. Unfortunately, testing is often neglected by the

developers mainly because of the time and cost of the testing process. Testing involves

lots of manpower, specially for a large system, such as distributed system. On the other

hand, it is more common to have bugs in a large system than a small centralized

system and therefore there is no alternative of testing to find and fix the bugs. The

situation gets worst if the developer follows one of the most powerful development

process called continuous integration process. This is because developers need to write

the test cases in each cycle of the continuous integration process which increase the

development time drastically. As a result, testing often neglected for large systems. This

is an alarming situation because distributed system is one of the most popular and

widely accepted system in both industries and academia. Therefore, this is one of the

www.manaraa.com

ii

highly pressured areas where lot of developers engaged to provide distributed software

solutions. If these systems delivered to the users untested, there is a high possibility

that we will end up with a lot of buggy systems every year. There are also a very few

number of testing framework exist in the market for testing distributed system compared

to the number of testing framework exists for traditional system. The main reason

behind this is, testing a distributed system is far difficult and complex process compares

to test a centralized system. Most common technique to test a centralized system is to

test the middleware which might not be the case for distributed system. Unlike the

traditional system, distributed system can be resides in multiple location of different

corners of the world. Therefore, testing and verification of distributed systems are

difficult. In addition to this, distributed systems have some basic properties such as fault

tolerance, availability, concurrency, responsiveness, security, etc. which makes the

testing process more complex and difficult. This research proposed a multi-agent based

testing framework for distributed system where multiple agent communicate with each

other and accomplish the whole testing process for a distributed system. The bullet

proof idea of testing centralizes system has been reused partially to design the

framework so that developers will be more comfortable to use the framework. The

research also focused on the automation of testing process which will reduce the time

and cost of the whole testing process and relief the developer from re-generating the

same test cases over and over before each release of the application. This paper briefly

described the architecture of the framework and communication process between

multiple agents.

www.manaraa.com

iii

DEDICATION

To my teachers and family members.

www.manaraa.com

iv

ACKNOWLEDGMENTS

I would like to thanks specially my committee chair, Professor Dr. Henry

Hexmoor. Without his guidance, encouragement and help this thesis wouldn’t have

been possible. My sincere thanks also goes to the committee members Dr. Shahram

Rahimi and Dr. Cheng for their patience and supports. I am lucky enough to get all

these nice peoples in my thesis committee. I am grateful to all my committee members

for reviewing my papers several times in spite of their busy schedule. They gave several

important suggestion which helps to enhance the testing framework in this stage.

I am also thankful to Dr. Mehdi Zargham and Dr. Namdar Mogharraben for their

valuable suggestion about the research.

www.manaraa.com

v

TABLE OF CONTENTS

CHAPTER PAGE

ABSTRACT ... i

DEDICATION ... iii

ACKNOWLEDGEMENTS .. iv

LIST OF TABLES .. viii

LIST OF FIGURES .. ix

CHAPTERS

CHAPTER 1 Introduction ... 1

1.1 COMMON TECHNIQUE OF TESTING DISTRIBUTED SYSTEM 3

1.1.1 TEST USING SIMULATION ... 3

1.1.2 MIDDLEWARE BASED TESTING ... 4

1.1.3 TEST USING EQUATION .. 5

1.1.4 TEST UNDER REAL ENVIRONMENT ... 5

1.1.5 TEST UNDER CONTROLLED ENVIRONMENT .. 5

1.2 DISTRIBUTED SYSTEM TESTING SOFTWARE .. 6

1.3 THESIS OUTLINE .. 7

CHAPTER 2 Related Work and Literature review .. 8

2.1 SOFTWARE TESTING ... 9

2.1.1 FUNCTIONAL TESTING .. 10

2.1.2 STRUCTURAL TESTING ... 11

2.2 DIFFERENT TESTING ACTIVITIES ... 12

www.manaraa.com

vi

2.3 CHALLENGES OF TESTING DISTRIBUTED SYSTEM 14

2.4 BENEFIT OF MULTI-AGENT BASED SYSTEM .. 17

2.5 RELATED WORK ... 18

CHAPTER 3 System Design .. 20

3.1 ORGANIZATIONAL STRUCTURE VS TEST FRAMEWORK 21

3.2 SYSTEM DESCRIPTION ... 23

3.2.1 TEST ENGINE ... 25

3.2.2 TEST GENERATOR ... 27

3.2.3 TEST AGENT ... 28

3.2.4 TEST CONFIGURATION FILE ... 29

3.3 AGENT INTERACTION .. 32

3.4 RESULTSET .. 34

CHAPTER 4 Framework evaluation ... 39

4.1 INTRODUCTION .. 39

4.2 PERFORMANCE TUNING ADVISOR .. 39

4.3 TESTBED ... 40

4.4 SECURITY ... 40

4.5 TEST RESULT ... 41

4.6 RELIABILITY .. 41

CHAPTER 5 Conclusion .. 42

5.1 CONCLUSION .. 42

5.2 FUTURE WORK ... 42

References ... 43

www.manaraa.com

vii

VITA ... 45

www.manaraa.com

viii

LIST OF TABLES

TABLE PAGE

Table 1: Different testing activities .. 13

Table 2: List of bindings supports in WCF and transport security modes of the bindings

 .. 30

www.manaraa.com

ix

LIST OF FIGURES

FIGURE PAGE

Figure 1: Communication between client and server in a distributed chat application .. 16

Figure 2: Top level view of an organizational hierarchy... 23

Figure 3: Major components of the framework .. 25

Figure 4: Task distribution and communication of the system 27

Figure 5: Task distribution among test agents ... 29

Figure 6: Sample test configuration file ... 31

Figure 7: Sequence diagram of agent interaction in the system 32

Figure 8: Process of data collection for result set .. 34

Figure 9: Class diagram of SessionDataManager class for a sample chat application . 35

Figure 10: Sample Resultset XML ... 36

Figure 11: Resultset class hierarchies... 38

file:///F:/Documents/SIU%20Documents/Research/Final/Draft/Draft4-Thesis-Ehsan.docx%23_Toc353535801
file:///F:/Documents/SIU%20Documents/Research/Final/Draft/Draft4-Thesis-Ehsan.docx%23_Toc353535802
file:///F:/Documents/SIU%20Documents/Research/Final/Draft/Draft4-Thesis-Ehsan.docx%23_Toc353535803
file:///F:/Documents/SIU%20Documents/Research/Final/Draft/Draft4-Thesis-Ehsan.docx%23_Toc353535804

www.manaraa.com

1

CHAPTER 1

INTRODUCTION

Distributed systems are getting more popularity day by day. This is mainly

because of high demand of processing power and request of handling large amount of

data in the application. It is getting acceptance in both industries and academia as a

powerful technique to design and develop software applications. There are also a

number of economic and technical reasons for which distributed systems are more

attractive to the software engineers than the traditional centralized systems. Some of

the major factors are listed below:

 Distributed systems are cheaper than the conventional system –

o Distributed systems are cheaper compare to the similar powerful

centralized system. This is because multiple low cost commodity

machines can be used to build a distributed system whereas centralized

system may need special costly hardware to provide the same

performance.

 Performance of the distributed systems are better than the traditional system –

o Performances are far better than the centralized system as distributed

system combines the processing power and storage capacity of the

multiple machines.

www.manaraa.com

2

 Distributed systems are scalable –

o Processing power and storage capability of a distributed system can be

increased easily by adding more nodes to it.

 Distributed systems are reliable –

o This is one of the most important features of the distributed system. Using

redundant computers and/or hardwares, faults of hardware or software

can be reduced drastically. Therefore failures of one component will not

shutdown the system completely.

 Distributed system can be available to a group of people –

o Because of its distributed capabilities, different server can serve different

group of people based on their taste and needs whereas others might

have different. Therefore it is possible to deliver some popular contents to

a specific group quickly.

Distributed systems and grid computing system have some similarities but there

are some clear separations between them. Grid computing mainly used to increase the

performance by combining a large number of processors for a particular task. On the

other hand, a machine in distributed system can runs varieties of software. Therefore

the applications of distributed systems are more comparing to grid computing system.

Distributed systems are also dynamic and can change behavior over the time and

based on the environment. As a result, testing distributed systems are far complex and

time consuming process. Besides these factors, there are also issues in distributed

www.manaraa.com

3

systems like concurrency, fault tolerance, security, interoperability, etc. which makes

difficult the testing process.

1.1 COMMON TECHNIQUE OF TESTING DISTRIBUTED SYSTEM

Most of the time distributed system engineers are worked under extreme

pressure. This is because of the popularity and complexity of the distributed system.

There is a very high demand of the distributed system in the market and this demand is

increasing every day. Because of this extra pressure, distributed system engineers are

sometimes forced to do a sloppy testing process and ends up with a low quality product.

Another main reason is the lack of efficient and user friendly testing framework for

distributed system. There are several procedures are being practiced by distributed

system engineers to test a distributed system. Some of the common procedures are

listed below:

1.1.1 TEST USING SIMULATION

This is probably one of the most common techniques of testing distributed

system. This is popular mainly because this technique does not need the actual

infrastructure of the distributed system to test the system. Therefore, it saves a lot of

time and cost of the developer. However, this technique often cannot describe the

actual behavior of the distributed system. In this technique, developer predicts the

actual behavior and the environment of a distributed system and based on those

assumptions they create a model and simulate the system. This type of testing might be

www.manaraa.com

4

helpful for the system that works on some specific formulas (e.g. electronic circuit or

networks) or system that follow the law of physics. There are three major problems of

simulation based testing:

 It is often difficult to predict the environment of the actual distributed system

using simulation since distributed systems are dynamic.

 Analyzing performance of the actual distributed system is very difficult using the

simulation technique because there might have lot of other factors which is

sometimes difficult to address during the simulation.

 Actual communication cost is not possible to predict using this technique as the

testing occurs on a virtual model in simulation based testing.

1.1.2 MIDDLEWARE BASED TESTING

This is one of the most common and effective technique of testing centralized

system. Middleware connects the presentation layer and database layer. It receives the

request from user through presentation layer and then process data with the help of

data layer. Finally it sends back the processed data to the presentation layer which

displays in the user’s screen. However, this technique is also not very helpful to test

distributed system. The major reason for why this is not an effective testing technique

for distributed system is-

 Testing middleware do not guarantee some of the common properties of

distributed systems such as concurrency, fault tolerance, etc.

www.manaraa.com

5

1.1.3 TEST USING EQUATION

In this method, the operation of a distributed system is described using an

equation/formula. Unfortunately, this is also not a very effective method to test a

distributed system. The major problem of testing using equation is, it uses some

assumptions to prepare the equation. That assumption could be wrong for some of the

distributed systems. Also it is very difficult to predict the environment for some

distributed system. Therefore test using equation might be helpful to test some

particular distributed system but it is often failed to generalize the testing process for

other types of distributed system.

1.1.4 TEST UNDER REAL ENVIRONMENT

This is another effective method of testing distributed system. This type of testing

works on the actual distributed system and therefore capable of find out the actual bugs

of the system. However this type of testing requires setting up the actual distributed

environment before the test taking place so that it can work on the actual behavior of

the distributed system. Therefore this technique is a bit expensive technique but saves

a lot of time by early discovering bugs in the system. Also it takes longer time to

complete the test cases compare to the simulation based technique.

1.1.5 TEST UNDER CONTROLLED ENVIRONMENT

This is another acceptable method of testing distributed system. In this technique

developers mimic the actual hardware of the distributed system. Therefore it saves the

www.manaraa.com

6

cost of testing actual system. Testing under controlled environment is referred as

emulation based testing. In this technique, developers can control the environment of

the system such as increase/decrease the workload of the distributed system, specify

the memory size of the machine, etc. There are some software commonly used to

accomplish this type of technique such as VMWare, VPC, etc. Microsoft Visual studio

also has a great number of testing tools where software engineers can control the

number of connection, different types of browser, number of processor, memory size,

etc. during the testing which is very helpful.

1.2 DISTRIBUTED SYSTEM TESTING SOFTWARE

There are some software already exist in the market to test distributed system.

Most of them came with several restrictions. Some of them focus on specific

technology/domain therefore it cannot be used in other platform/domain (e.g. some of

them only focusing on BIZTalk solutions). However- the main purpose of the generic

test framework for distributed system is to be able to swap a distributed system with

other and still have the capability of generating and executing the test cases and display

the test results in a standard way. There are also some software focused on specific

types of testing (e.g. load testing, integration testing, etc.). Though we focused on the

unit testing of the distributed system in this research but our target is to design the

framework such a way so that the logic of the testing can be easily extend to other

major types of testing in future.

www.manaraa.com

7

1.3 THESIS OUTLINE

The remaining of the paper is structured as follows-

 Chapter 2 is discussion about related works and literature review

 Chapter 3 covers the system design of the test framework including the structure

of the framework as well as the interaction between different agents.

 Chapter 4 is discussion about the evaluation of the framework

 Chapter 5 discuss the conclusion reached and future work required

www.manaraa.com

8

CHAPTER 2

RELATED WORK AND LITERATURE REVIEW

The overall view of testing process has been changed a lot during last couple of

years. Software engineers now consider testing is a part of the development and

maintenance activity. They are no longer wanted to consider testing as a post activity.

Previously, software engineers used to test the system after completion of coding phase

(e.g. Waterfall model has five phases and testing takes place right after the

implementation phase). Therefore, there is a huge change in software development life

cycle/ process. It also indicates that software companies are giving more importance on

testing now a day than before which is a very good sign for the whole software industry

as it leads to develop quality software. Previously, most of the software companies

followed waterfall model or spiral model or iterative or incremental model etc. But these

days most of the software companies following either core agile development or the

variations of agile development model (e.g. extreme programming development). Agile

development model is an iterative and incremental development model. One of the

major differences between agile development model and traditional model, like waterfall

model, is the testing process. In agile development, there is a testing phase in each

cycle and the duration of each cycle is around 1-4 weeks. Therefore, testing happens at

different parts of software development life cycle in agile development. This technique is

also referred as continuous integration process. On the other hand, as we mentioned

above, in waterfall model testing happens after completing the system development.

Testing in each cycle is very important. It saves time and labor cost drastically because

www.manaraa.com

9

if any glitch/error detect at the middle of the development in waterfall model, developer

needs to go back to the beginning and write new code, all over again which is not the

case for agile development. In agile methodology work is evaluated at the end of each

cycle. Agile development ensures the developers that bugs are detected in the

development cycle and product is double checked after the removal of the bug which

gives more confident to the developer about the completed modules and the whole

system. However- there is a major drawback of this process. Developer needs to spend

a lot of time to write the test cases in agile development as testing happen in each

cycle. Also, since this is a manual process, most of the time developers need to re-write

the test cases once the source code updated. Still this process is tolerable for traditional

system as there are many open source and commercial testing frameworks exists for

the traditional system but unfortunately there are very few for distributed system. It’s a

big pain to rewrite the test cases for a large distributed system in each cycle. Therefore

we really need an automated process to test the distributed system in each cycle of the

development. In the rest of the chapter, existing testing techniques and related works on

testing distributed system has been discussed briefly.

2.1 SOFTWARE TESTING

In a simple word, software testing verifies a particular program or module or

section meets the project requirements or not. Some people compare testing with

debugging. But testing is more than just debugging a program. Software testing can be

a requirement or acceptance testing, system testing, integration testing, unit testing,

www.manaraa.com

10

reliability estimation testing, load testing, etc. A formal definition of software testing is-

Software testing is the process that validate and verify a software: [1]:

1. Meets the requirements of its design document.

2. Works as indicated in the requirements.

3. Can be implemented with the same characteristics.

4. Satisfies the needs of the users.

There are two major classification of testing process. They are (1) Functional testing

and (2) Structural testing. There is a very short description of these two types of testing

in next section of this paper for the reference.

2.1.1 FUNCTIONAL TESTING

Functional testing is referred as black box testing. In functional testing, functions are

tested normally by providing input to the functions and compare the output of the

functions with the expected results. There is no need of knowledge about the internal

structure of the system for functional testing. Functional testing basically checks the

overall behavior of the program. Functional testing basically involves the following five

steps[2]:

1. Select the functions which are expected to perform.

2. Generate input data based on the requirements.

3. Find out the expected result based on the requirements.

4. Run the test case.

www.manaraa.com

11

5. Finally compare the actual result with the expected result.

Most common functional testing are: system testing, regression testing, user

acceptance testing, etc. This kind of testing is done by mostly non-technical users as

they do not need knowledge about the source code to perform the testing. These types

of testing do not guarantee that the system will perform as expected for every condition.

Therefore, we need to test the internal structure of the system. Here structural testing

comes in the scene.

2.1.2 STRUCTURAL TESTING

Structural testing is also known as white box testing. To perform structural

testing, tester must to have knowledge about the internal logic of the system. The main

purpose of structural testing is to make sure that the functionality of the system is

working as described in the specification. Most common structural testing are: path

testing, code coverage testing and analysis, logic testing, unit testing, load testing,

stress testing, performance testing, security testing, etc. Structural testing techniques

include[3]:

 Control flow testing

 Data flow testing

 Branch testing

 Path testing

 Statement coverage

 Decision coverage

www.manaraa.com

12

This paper focuses specially on the structural testing, more specifically unit

testing. Software engineers often prefer to perform structural testing because of its

advantages. However- structural testing is complex and difficult compare to the black

box testing. The major two difficulties to perform structural testing are: [4]

1. Testers have to have full knowledge about the system and source code to do

the structural testing.

2. Sometimes it might not possible to test every single conditions of a function.

Therefore, it is certainly possible to skip or remain untested some conditions.

In this research we have tried to overcome the above difficulties by proposing an

automated testing framework. More details of the framework have been discussed on

chapter 3.

2.2 DIFFERENT TESTING ACTIVITIES

Each phase of the software development life cycle can be test using different

level/types of testing. Each of these testing focused on specific types of faults/bugs of

the program. Some of the major testing technique and their scope are listed below in

Table 1.

www.manaraa.com

13

Table 1: Different testing activities

Name of Testing Description

1. Acceptance Testing This is a high level testing technique which is normally

created by communicating with client, tester, business

analyst and developer. It is often expressed in a business

domain language. This type of testing normally performs right

before the delivery of the product to ensure that the product

met its requirement.

2. System Testing System testing is referred as black box testing. It’s not only

evaluates a particular area of the system but it evaluates the

whole system with the system requirements.

3. Integration Testing This is another popular testing technique which detects any

faults between the software or hardware that integrated

together. The target of the integration testing is to verify the

performances and/or functional and reliability requirements

according to the specification.

4. Unit Testing Unit testing is probably most popular testing technique

among all other testing which checks that a particular section

or module or unit meets the specific requirements or not. A

unit can be a method, a class or a module.

www.manaraa.com

14

 2.3 CHALLENGES OF TESTING DISTRIBUTED SYSTEM

A distributed system is a group of independent machine or nodes that works as a

single system to its end user [5]. Usually distributed systems are much larger and

powerful compare to a traditional system. This is because it combines the capabilities of

distributed software/hardware. A perfect distributed system should have the following

characteristics[6]:

 Fault-Tolerant: It should recover when hardware fails rather than shutdown or

perform an incorrect action.

 Highly Available: It can execute operations, provides services even some of

the components failed to perform.

 Recoverable: Components should restart themselves and refresh the system

automatically after a failure happen.

 Consistent: It doesn’t matter how many machines communicates with each

other but they should acts like a single system and coordinate actions by

multiple distributed components.

 Scalable: It should be scalable and virtually there will not have any significant

effect of adding more nodes to a distributed system. It should operate the

system perfectly as it was intended.

 Responsive: It should be responsive and therefore always response in a

timely manner.

 Secure: It should authenticate the access to data and services.

There are several challenges of testing distributed systems. One of the most

www.manaraa.com

15

challenging issue is- a centralized system resides on a single computer whereas a

distributed system can be resides on multiple locations of the world. Hence testing and

verification of distributed systems are far difficult compare to a centralized system as

testing involves all parts of the distributed system. Besides this, there are also issues

like fault tolerance, availability, concurrency, responsiveness, security, etc. which makes

the job more complex and difficult. One of the important characteristics of the

distributed system is responsiveness. So if any of the distributed components fails to

response then how long to wait to decide that the test failed is another critical issue.

Failed to response doesn’t always mean that the system is buggy. It can happen for

many reasons. One of the common reasons is the network communication problem or

may be because of hardware failure. Another important issue is distributed server can

have different platform and/or architecture. As a result, there is a chance of data loss or

serialization problem since different platform handle same object differently which is

often refer as boxing/unboxing. Testing framework should have the ability to find out

which server cause the problem. There can have communication problem between

different platforms too. Different server can use different protocol for the communication.

Therefore it can create a serious problem to test the system. Finally, security can be

another concern. Messages should not pass across the public network which can cause

data lick.

We have designed a distributed chat application to simulate the testing

framework proposed in this paper and addressed the above issues. Chat application

uses a central server to keep all the messages from different users. It is a client-server

www.manaraa.com

16

application where the server takes the request from different clients and processes the

request with the help of database server and finally sends back the result to the client.

The server uses soap protocol for the communication between server and client.

Therefore it supports clients from different platforms (eg. .NET, Java, Python, etc.).

Client machines ping continuously after a certain interval to check updates from the

server. The whole process illustrate in Figure 1 from the bird’s eye view.

Figure 1: Communication between client and server in a distributed chat application

www.manaraa.com

17

2.4 BENEFIT OF MULTI-AGENT BASED SYSTEM

Now a days multi-agent based system are more popular for modeling, designing

and developing software systems. Also it is getting acceptance widely as there are a

good number of development platforms, tools, modeling languages and programming

languages exists for multi-agent systems. One of the major benefits of multi-agent

systems is- in multi-agent system, agents are autonomous. They act autonomously on

behalf of users in distributed environments. Therefore, agent can do their task

independently by communicating and sharing information with other agents. This

property of multi-agent system is really very helpful to design testing framework for

distributed system. There are two types of agent exists in multi-agent system. They are

local and global agents. Local agents do not have a global view of the system.

Therefore local agents communicate with other agents and collect the required

information to accomplish the task assigned to them. Agents also update their

knowledge from the environment. In multi-agent system, agents are specially used to

solve complex problem that are quite difficult to solve by a single agent. Therefore,

multi-agent system provides more natural way to represent a problem. Using multi-

agent system, it is easy to represent team planning, task allocation, progress report, etc.

Multi-agent provides reliability, maintainability, robustness, efficiency, reusability,

flexibility, etc. It also enhanced the overall system performances. Multi agent systems

are decentralized and do not have the “Single point of failure” problem like the

centralized system. Multi-agent systems are already being using in multiple different

domains successfully such as aircraft maintenance, wireless collaboration and

www.manaraa.com

18

communication, military logistic planning, supply-chain management and many other

areas [7]. Because of all these wonderful properties of multi-agent system, it could be a

very good and more realistic platform to design and develop a user friendly testing

framework for distributed system.

2.5 RELATED WORK

There are number of people already realized the importance of testing distributed

system and started research on this issue. Different authors worked on different issues

of distributed system. Some of them worked on the major properties of the distributed

systems such as concurrency, security, timing, reliability etc. [8, 9]. Some of the authors

did a very good improvement of the testing process[10, 11]. There are few authors did

research out the box to get success. For example, some of the authors did research on

random testing technique to test a distributed system [12, 13]. Unfortunately, it might not

give guaranteed performance in all environments. All these novel work has been

considered carefully to design the testing framework proposed in this paper. There are

also a group of authors believe that model checking can be a best and most effective

technique to test distributed system. Some of the researcher also votes for testing

middleware only in case of testing distributed system[14]. They assume that the

middleware is capable of handling all concurrency and fault-tolerance issues. This

seems very ambitious for testing distributed system. However- this is a proven and

common technique to test a centralized system. Besides these, there are also a number

of proposals are exists to test concurrent and distributed systems. However, most cases

www.manaraa.com

19

it is not clear enough that how these techniques can be scale up or how widely and on

what conditions it can be applicable to the real world distributed systems. However- one

author named Dowling [15] presents a promising method of testing distributed system

for real time Ada system. According to Dowling’s theory, below are the basic steps of

testing distributed systems:

1. Test the internal logic of a unit on the host, using dummy units to send or

receive message to or from the unit of interest.

2. Test the unit on the host when it interacts with real version of other units

executing with pseudo parallelism.

3. Test the unit when they are distributed with true parallelism.

Dowling also mentioned that a special tool can be used to generate the stubs for

both client distribution object and server distribution object. These stubs communicate

using the underlying infrastructure of communication service. This research indicates

that we can partially reuse the concept of testing traditional system to get a user friendly

testing framework for distributed system. System design of the proposed testing

framework has been described briefly in the next chapter.

www.manaraa.com

20

CHAPTER 3

SYSTEM DESIGN

This model is inspired by the hierarchical organizational structure. An

organizational structure consists of different activities. Among them, some of the major

activities are task distribution, communication between different hierarchies and

supervision which helps to achieve a specific goal. It describes which individuals need

to participate in which decision process. There are two major organizational structure

exists in most of the organizations. They are Flat structure and hierarchical structure. In

flat organizational structure, there are very few or no level of management between

management and staff level employees. This structure is especially very effective for

small organization. The major benefit of this structure is, speeding up the coordination

and communication between management and employees. On the other hand, there is

another popular organizational structure exists which is suitable for medium to big

organization. Often it called as hierarchical organizational structure. Our model can be

compared with the hierarchical organizational structure of an organization. In this

chapter we describe how this framework is comparable with an hierarchical

organizational structure and the design of the framework briefly.

www.manaraa.com

21

3.1 ORGANIZATIONAL STRUCTURE VS TEST FRAMEWORK

We consider an IT (Information Technology) company as an example for our

model. We observed how an organization functions by different categories of

employees such as CEO, CTO, Team Manager, Sr. Software Engineer, Junior Software

Engineer, etc. We also observed that the task distribution process between the different

individuals, their communication process and the supervision in a hierarchical

organizational structure. Hierarchical structure follows the layout of the tree. There will

be several departments/groups in this structure that are responsible for different module

of the project and each department/group will have a team leader who communicates

with team members and upper management often called as team leader. Team leaders

ensure that the specific module which is assigned to the team, meets the client’s

requirements. In this structure, employees narrow down their focus on specific tasks

and become specialists on a specific area. For example, in a small IT company, we find

that there are several team and each team have specialists such as software analysts,

database experts, software engineer, UI(User Interface) engineer, testing engineer, etc.

Communications between different departments are very important in this structure as

each department have knowledge on what has been assigned to them rather than

knowledge on the organization as a whole. In addition to this there will be competition

between different employees in hierarchical structure as it will leads them for the

opportunities of the promotions and better salaries. Task distribution is also different in

hierarchical organizational structure. Team leader distribute the task among team

members when they start working on a project. Team leaders are the bridges between

www.manaraa.com

22

the team members and upper management. They communicate with the upper level

management about the progress of the project. One person will have all the updates at

the end of the day from the entire department often called CTO (Chief Technical

Officer)/Project Manager. CTO’s role is to assure the successful execution of the

project’s requirement, risk analysis and deployment. They often communicate with the

client and play role as a messenger to the team regarding the project status. There is

one highest position in most of the organization often refer as CEO (Chief executive

officer). CTO and CEO communicate with each other and get overall impression about

the project and team. CEO deals with the agreement of the project and gives a high

level overview of the project to client. CEO represents the whole company in front of the

world and attends in important business meetings. These hierarchies may differ from

company to company. There can be more hierarchies in some companies according to

the need and types of project they are dealing with. But the overall procedure is more or

less same for most of the companies. Figure 2 shows a top level view of an

organizational hierarchy.

www.manaraa.com

23

If we analysis the whole system closely from the beginning to the end of the

project then we will see there is a very good message passing system between different

hierarchies of people in hierarchical organizational structure. We did research on this

organizational model and found that this idea is a well fit in software to test a large

distributed system. Different hierarchies of this model can be replaced with different

agent and they can collaborate with each other to accomplish the whole testing process.

Rest of this chapter, we describe the system design of the test framework.

3.2 SYSTEM DESCRIPTION

There are three major components in the framework: 1) Test Engine, 2) Test

Generator and 3) Test Agent. Test Engine mainly distributes the task between different

agents and collects result from them once they are done. Therefore Test Engine can be

Figure 2: Top level view of an organizational hierarchy

www.manaraa.com

24

compared with the CTO of the organization who also distributes the task between

employees and prepare a progress report for projects. Test generator generates the test

cases and group them based on the configuration file. Each group can have one or

more test cases. This specially helps to find defective module quickly at the end of test.

Test generator works by collaborating with Test Engine. As soon as it receive a

command from Test Engine and get all required information about the system, it starts

generating test cases for the system. There are multiple local and distributed Test

Agents which works on the test cases. These agents have special access to the system

as they deal with the dynamic environment of the distributed system. The details about

this will be provided soon. Test Agents works independently and interact with each

other to accomplish the assigned task. Test agents do not have knowledge on the full

system. Groups of Test Agent work together on a test module which may contain

multiple test cases. Hence this group of agent can be compared with “team” of the

organization where one of the agents will play the team leader role. The whole

framework can be customized by a configuration file which is basically a XML file.

Figure 3 shows the major components of the framework and the communication

between them.

www.manaraa.com

25

We will discuss on each of these components briefly in next section.

3.2.1 TEST ENGINE

Test engine is the test initiator as well as the test terminator. Test engine setup

the testing environment based on a configuration file called test configuration file which

is basically a simple xml file. Test configuration file contains very important information

regarding the test environment such as connection end points (Address, contract and

binding information) of distributed server, application variables (mock object framework

configuration, random value generation logic), etc. Below are the major responsibilities

of the Test Engine–

a. Initialize the test environment based on the test configuration file

b. Communicate with different test agent to reveal the structure of different

distributed module. Test agents can be resides in different distributed server.

Since Test Agents have local access to the server, they reveal the application

Test Engine Test Generator

Distributed System Test Configuration

Agent

Figure 3: Major components of the framework

www.manaraa.com

26

structure using the reflection technique. Communication between different

Test Agent handled by Microsoft Windows Communication Foundation (WCF)

framework. The major benefit of using WCF is it supports a number of

transport schemas besides the popular HTTP binding like TCP, Peer

Network, Named Pipe, MSMQ(Microsoft Message Queue), WSHTTP, and

WebHTTP (used for restful service) binding. Therefore, if different server uses

different technology, this framework still works.

c. Send signal to “Test Generator” to generate the test cases.

d. Test Engine validates the test cases before execute in next step.

e. Start the testing process by sending a signal to the test agent in different

server. It also provides the relevant test cases to the test agents.

f. Test Engine collects test result from test agents once it completes the test

cases and save the result in the physical disk.

g. Display and analysis the test result.

h. Terminate testing process.

www.manaraa.com

27

3.2.2 TEST GENERATOR

Test generator made the testing process automated. Test generator is an

independent agent. It accepts request from Test Engine. It also receives the structure of

the application from Test Engine that need to be test. Test generator reads the structure

of the application and generates test cases using mock framework. Finally, it sends

back the test cases to the Test Engine. Test Engine sends the tasks to the test agents

for test. So below are the lists of the responsibilities of the Test Generator:

a) Accept test generation request from test generator

b) Generate test cases with arguments list based on the application structure.

Test Generator reads the mock configuration from the Test Configuration File.

Figure 4: Task distribution and communication of the system

Test Engine

WCF

Communication

Channel

WCF

Communication

Channel

Distribute d System

Test Agent

www.manaraa.com

28

3.2.3 TEST AGENT

Test agents are independent agents that received command from Test Engine

and accomplished the task. Test agent creates sub-test agents to test a Test Module.

Each test module may contain multiple test cases. Test agents are multi-threaded.

Therefore if one test case takes long time to complete, it can work on other test cases in

parallel rather than waiting. When sub test agent finished the execution, it submits the

result to the parent Test Agent. Here parent Test Agent can be compare with the team

leader role in an organizational structure and sub test agent as team member. Test

agents are local to the server. Therefore they have full access to the resources. Below

are the major responsibilities of a Test Agent:

a. Exposes class, methods and properties definition from assembly using

reflection technique and send back the result to the Test Engine.

b. Test agents are multi-threaded so that it creates sub agent for each test

cases. Maximum number of sub-agent creation can be handled by test

configuration file.

c. Sub-Test Agent completes the test case and sends back the result to the

parent Test Agent. Once parent Test Agent get result for all test cases of a

test module, it sends the result to Test Engine.

www.manaraa.com

29

3.2.4 TEST CONFIGURATION FILE

Test configuration file is basically a XML file which contains the server

information as well as application variable. Test Engine reads the test configuration file

and set the test environment based on that. Figure 6 shows a sample Test Configuration

file. As stated above, WCF (Windows Communication Foundation) framework used to

communicate with Test Agent in different server. Therefore we need to set behavior

services and binding information in the configuration file. Different distributed server

should be listed in the services tag. Each service has endpoint which defines the

Address, Binding and contract information of the service. In short it is define as ABC

(Address, Binding, and Contract). Table 2 shows list of binding supports in WCF and the

transfer security modes of the bindings[16].

Distribute d System

Test

Agent
Sub Test

Agents

Figure 5: Task distribution among test agents

www.manaraa.com

30

Table 2: List of bindings supports in WCF and transport security modes of the bindings

Besides WCF configuration, the Test Configuration file also contains

TestGenerator, TestAgent and ResultSet tag. TestGenerator contains the mock

framework settings. Test Agent specific setting will be inside the Test Agent tag such as

Masimum number of thread for each Test Agent, Maximum execution time for a test

case, etc. Resultset tag allows customizing the display of the test results. It helps to

analyze the test result and quickly find out the bugs in the system.

www.manaraa.com

31

<?xml version="1.0" encoding="utf-8" ?>
<TestConfiguration>
 <system.serviceModel>
 <behaviors>
 <serviceBehaviors>
 <behavior name="Service1Bevhavior"/>
 <behavior name="Service2Bevhavior"/>
 </serviceBehaviors>
 </behaviors>

 <services>
 <!--SERVICE ONE-->
 <service name="Service1">
 <endpoint address=""
 binding="netTcpBinding"
 bindingConfiguration="tcpServiceEndPoint"
 contract="ListenerService.IListenerService"
 name="tcpServiceEndPoint" />
 </service>

 <service name="Service2">
 <endpoint address=""
 binding="netTcpBinding"
 contract="UploadObjects.IResponseService"
 bindingConfiguration="TransactedBinding"
 name="UploadObjects.ResponseService"/>
 </service>
 </services>

 <bindings>
 <netTcpBinding>
 <binding name="tcpServiceEndPoint" closeTimeout="00:01:00"
 openTimeout="00:01:00" receiveTimeout="00:10:00" sendTimeout="00:01:00"
 transactionFlow="false" transferMode="Buffered" transactionProtocol="OleTransactions"
 hostNameComparisonMode="StrongWildcard" listenBacklog="10" maxBufferPoolSize="524288"
 maxBufferSize="65536" maxConnections="10" maxReceivedMessageSize="65536">
 <readerQuotas maxDepth="32" maxStringContentLength="8192" maxArrayLength="16384"
 maxBytesPerRead="4096" maxNameTableCharCount="16384" />
 <reliableSession ordered="true" inactivityTimeout="00:05:00"
 enabled="true" />
 <security mode="None">
 <transport clientCredentialType="Windows" protectionLevel="EncryptAndSign" />
 <message clientCredentialType="Windows" />
 </security>
 </binding>
 </netTcpBinding>

 <netTcpBinding>
 <binding name="TransactedBinding">
 <security mode="None" />
 </binding>
 </netTcpBinding>
 </bindings>
 </system.serviceModel>

 <TestGenerator>
 <!-- Mock Framework Configuration Settings-->
 <mock>
 <framework name="" assembly=""></framework>
 </mock>

 </TestGenerator>

 <Testagent>
 <!--Settings for Test Agent-->
 <add name="MaxThread" value="4"></add>
 <add name="MaxExecutionTime" value="10"></add>
 ...
 </Testagent>
 <Resultset>
 <DisplaySummary>True</DisplaySummary>
 <AllowGrouping>True</AllowGrouping>

 </Resultset>
</TestConfiguration>

Figure 6: Sample test configuration file

www.manaraa.com

32

3.3 AGENT INTERACTION

Figure 7 shows the sequence diagram of the system.

Figure 7: Sequence diagram of agent interaction in the system

www.manaraa.com

33

From the above diagram we are seeing that Test Engine first start the program

by requesting program structure to the Test Agent. Test agent discovers the application

structure using reflection method and sends back the result to the Test Engine for futher

processing. This process makes the system automated. Test Engine always gets the up

to date program structure of the application. Therefore, Programmers do not need to

update the program structure manually after each modification of the system. It also

eliminates writing extra coding. Test Generator is another agent which works next with

the program structure and generates test cases based on that. Test generator’s life line

starts when it gets the command from the Test Engine to generate test cases. Finally, it

validates the test cases using Test Validator agent and sends back the test cases to the

Test Engine. Now Test Engine has all the information to run the test. It communicates

with the Test Agents to start the testing process next. Test agents receive a command

from Test Engine with a list of Test Cases. Test agent then runt the test cases with help

of other local agents and send back the result to the Test Engine. Finally, Test Engine

creates the result set once it get all the test result from Test Agents and displays the

result to the user. Test Engine allows user to customize the display screen so that

programmers can find a specific issues quickly as well as can use the screen in the

report.

www.manaraa.com

34

3.4 RESULTSET

After finishing the execution of test cases, Test Agents collects the result from its

sub-agents. Finally, it sends the result to the Test Engine for further processing. Test

Engine stores all the test result to a result set XML file.

Figure 8: Process of data collection for result set

Result set XML is a well-structured XML file where test cases are grouped by

Test Module. Each of this group can have multiple test cases. It also allows user to

customize the groups. Main benefit of using this approach is we can see test result for

individual test cases as well as the whole group at a glance. For example, say we have

a class SessionDataManager where SessionDataManager have four methods. They

are:

Distributed

Test

Case

Result set

Storage (XML)

Data

Processing

Test Engine

(Data Receiver)

Display

Result

Generates test cases with help of test generator

Test

Agent

www.manaraa.com

35

 GetValue(string key) – Returns session object based on the key user

provides.

 SetValue(string key, string value)- Stores object in application session against

the user provided key.

 AuthenticateUser(string username, string password)- Check if the user is

authenticated. If the user is authenticated then it stores the username and

some other information in the session.

 ForgetPassword(string username)- Check that the username is exist or not in

the system. If exist it sends the reset password link to the user’s email. It also

clears all the user related information from the application session.

Figure 9: Class diagram of SessionDataManager class for a sample chat application

www.manaraa.com

36

Resultset XML will have all the test cases for these four methods in a group say

“Session Data Manages”. Each test case has request parameters and response result.

If the response result match with the expected result then the test passes, otherwise it

fails. A sample resultset XML for the SessionDataManager has been given below:

Figure 10: Sample Resultset XML

www.manaraa.com

37

Six classes represent the resultset xml. They are:

1. Resultset: It mainly contains the list of distributed server information using the

instance of the server class.

2. Server: Server class has properties like name of the server, address of the

server, binding information, contract information etc. It also contains list of the

test group information.

3. Test Group: Test group contains information of one or more test cases. For

example, if we consider the shopping cart module of a regular e-commerce

site then we will see there are several functions under shopping cart like tax

calculation, payment authorization, address verification, etc. Test group will

keeps all the test result of these test cases in one group for better readability.

Primarily the group formed based on the class and their properties. So, each

class is a test group and the methods are the test cases under that group. But

manually user can customize the group using the user interface.

4. Test Case: Test case contains the actual request and response information.

Instance of request and response class is used to store the information. If any

test fail then developer can get an idea that for which condition(request

properties) the function doesn’t working properly.

5. Request: Contains the request information like name of the method,

submitted parameters, submission method(get/post), etc.

6. Response: Response contains the result from the server against the request

Figure 11 shows the class diagram of the resultset classes.

www.manaraa.com

38

Figure 11: Resultset class hierarchies

www.manaraa.com

39

CHAPTER 4

FRAMEWORK EVALUATION

4.1 INTRODUCTION

Automated testing framework provides benefit to a distributed system many

ways. This framework can be seen as a performance tuning advisor for a distributed

system. The result obtained from this framework can be used to improve the operation

of the system. In this chapter we will see how we can get benefitted from this testing

framework to design a successful distributed system.

4.2 PERFORMANCE TUNING ADVISOR

This is a very flexible testing framework and allows user to customize its behavior

many ways. The final test result from this testing framework can be used to improve the

overall distributed system. This testing framework not only explores the bugs of the

system but also the behavior of the system. By seeing the test report, programmers can

check which process (es)/ module(s)/ method(s) takes longer time to response than

usual as it logs the testing time. They can easily find out which network or function is

responsible for this particular behavior and fixed the problem. They can also find out the

buggy methods very quickly by seeing the test result since the test result groups the test

cases and display how many test cases fails for each test group. If most of the test

cases fails for a module or takes longer time then programmers can rewrite the whole

module to ensure the quality of the software. Since the framework is working by

www.manaraa.com

40

communicating multiple agents with each other runtime, it is aware about the latest

changes of the system. So developer can check the whole system right after deploying

an update. If the new change breaks the system partially or fully, programmer can easily

notify about it and fix the issue without writing any extra test cases. So, overall this

testing framework works as a performance tuning advisor for a distributed system.

4.3 TESTBED

This framework supports automated generation of mock data as well as user

defined data. Also programmers can set the value of the parameters manually, if they

want. Therefore, it is a very flexible framework.

4.4 Dedicated Resource

For each test case, it creates a dedicated channel using threading technique so

that other test cases do not wait because of an execution of a longer test case. It also

supports dependency. User can mark if a test case dependents of other test case(s).

The framework will order the test cases such a way so that the parent test cases will

execute before the dependent one.

4.4 SECURITY

Overall this is a very secured framework. Programmers do not need to disclose

the source code of the system to the test framework through network. Since the agents

are local, they read the structure of the assembly runtime and send an XML file to the

www.manaraa.com

41

Test Engine using WCF technology. WCF ensures the security and reliability of the

data.

4.5 TEST RESULT

Test result is one of the very important parts in testing. Test result designed such

a way so that users can easily detect the bug of the system. Test result logs the time of

each test case which helps to find inefficient functions. Test Result displays how many

test cases fails in a Test Module which helps to find the buggiest areas of the system.

Finally it allows the user to customize the screen so that it can be used as a report to

the client.

4.6 RELIABILITY

This is a very reliable testing framework from many aspects. Most recent and

proven technology has been used to build the framework. This framework supports n

number of distributed server to test. It doesn’t test only middleware like other testing

framework. This framework can be used to test business layer as well as the

presentation and data access layer.

www.manaraa.com

42

CHAPTER 5

CONCLUSION

5.1 CONCLUSION

An automated multi-agent test framework for distributed system has been

designed and its component as well as communication process between agents has

been explained briefly in this paper. It also describes how this framework can be used

as unit testing tool in a distributed system. Using similar technique, this framework can

be used to implement other types of testing strategies like stress testing, performance

testing, load testing, etc. We believe the approach that is described in this paper can be

scaled up and used to test larger and complex distributed system.

5.2 FUTURE WORK

Since, this framework is a footstep to build an automated unit testing framework

for distributed system, there are several ways we can improve the logic and

performance of the framework before using it in the real production environment.

Currently, this framework support unit testing. In future, this framework can be extend to

support other types of testing technique specially load testing, stress testing,

performance testing and recovery testing which are very important for a distributed

system.

www.manaraa.com

43

REFERENCES

1. Software Testing. 2012 [cited 2012 August 01]; Available from:

http://en.wikipedia.org/wiki/Software_testing.

2. Functional Testing. 2012 [cited 2012 August 10]; Available from:

http://en.wikipedia.org/wiki/Functional_testing

3. White-box testing. 2013 [cited 2013 March 06]; Available from:

http://en.wikipedia.org/wiki/White-box_testing.

4. Khan, M.E., Different Forms of Software Testing Techniques for Finding

Errors IJCSI International Journal of Computer Science Issues, 2010. 7(3): p. 12.

5. Tanenbaum, A.S. and M.v. Steen, Distributed Systems Principles and

Paradigms. Vol. 2. 2007, NJ: Pearson Prentice Hall.

6. Introduction to Distributed System Design. [cited 2013 March 18]; Available

from: http://www.hpcs.cs.tsukuba.ac.jp/~tatebe/lecture/h23/dsys/dsd-tutorial.html.

7. Multi agent systems. [cited 2013 February 10]; Available from:

http://www.cs.cmu.edu/~softagents/multi.html.

8. Tsai, W.T., L. Yu, and A. Saimi, Scenario-Based Object-Oriented Test

Framework for Testing Distributed Systems. In Proc. of the Ninth IEEE Workshop

on Future trends of Distributed Computing Systems, 2003: p. 288-294.

9. Ghosh, S. and A.P. Mathur, Issues in Testing Distributed Component-Based

Systems. First ICSE Workshop on Testing Distributed Component- Based

Systems, 1999.

http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/Functional_testing
http://en.wikipedia.org/wiki/White-box_testing
http://www.hpcs.cs.tsukuba.ac.jp/~tatebe/lecture/h23/dsys/dsd-tutorial.html
http://www.cs.cmu.edu/~softagents/multi.html

www.manaraa.com

44

10. Long, B. and P. Strooper, A Case Study in Testing Distributed Systems. in Proc.

of the Third International Symposium on Distributed Objects and Applications,

2001: p. 20-29.

11. Lastovetsky, A., Parallel Testing of Distributed Software. ELSEVIER Trans.

Information and Software Technology, 2005. 47(10): p. 657-662.

12. Hamlet, D., Random testing. In Encyclopedia of Software Engineering, 1994.

13. Miller, B., et al., Fuzz revisited: A re-examination of the reliability of UNIX utilities

and services. 1995.

14. Lyu, G.X.a.M., Testing, reliability, and interoperability issues in the CORBA

programming paradigm. In Proceedings of the 2000 Asia-PaciJic Software

Engineering Conference, 2000: p. 530-537.

15. Dowling, E.J., Testing Distributed Ada programs, in Proceeding TRI-Ada '89

Proceedings of the conference on Tri-Ada '89: Ada technology in context:

application, development, and deployment1989. p. 517-527.

16. Bindings and Security. 2012 [cited 2013 March 10]; Available from:

http://msdn.microsoft.com/en-us/library/ms731172.aspx.

http://msdn.microsoft.com/en-us/library/ms731172.aspx

www.manaraa.com

45

VITA

Graduate School

Southern Illinois University

Ehsanul Haque

ehsan_aiub@yahoo.com

American International University Bangladesh

Bachelor of Science, Computer Science, February 2007

Special Honors and Awards:

 1. Best Graduate Assistant Nominee – 2011

 Southern Illinois University Carbondale, Carbondale, IL, 62901, USA

 2. Employee of the quarter – 2006

 Bblobal sourcing LLC, Gulshan, Dhaka, Bangladesh

 www.bglobalsourcing.com

Thesis Title:

 AN AUTOMATED MULTI-AGENT FRAMEWORK FOR

TESTING DISTRIBUTED SYSTEM

Major Professor: Dr. Henry Hexmoor

Publications:

 1. M. R. Zargham, E. Haque, and J. Cheng. 2012. KumuCloud: An Open Access

Academy, 5th conference on e-learning excellence in middle east, Dubai, UAE

2. M. R. Zargham, E. Haque, and J. Cheng. 2012. KumuCloud: A Progress

Report, EEE'12 - The 2012 International Conference on e-Learning, e-Business,

Enterprise Information Systems, and e-Government, Las vegas, Nevada, USA

